Study: Fiber Length Profiling
Data Use Terms
WU-Minn HCP Consortium Open Access Data Use Terms
1. I will not attempt to establish the identity of or attempt to contact any of the included human subjects.
2. I understand that under no circumstances will the code that would link these data to Protected Health Information be given to me, nor will any additional information about individual human subjects be released to me under these Open Access Data Use Terms.
3. I will comply with all relevant rules and regulations imposed by my institution. This may mean that I need my research to be approved or declared exempt by a committee that oversees research on human subjects, e.g. my IRB or Ethics Committee. The released HCP data are not considered de-identified, insofar as certain combinations of HCP Restricted Data (available through a separate process) might allow identification of individuals. Different committees operate under different national, state and local laws and may interpret regulations differently, so it is important to ask about this. If needed and upon request, the HCP will provide a certificate stating that you have accepted the HCP Open Access Data Use Terms.
4. I may redistribute original WU-Minn HCP Open Access data and any derived data as long as the data are redistributed under these same Data Use Terms.
5. I will acknowledge the use of WU-Minn HCP data and data derived from WU-Minn HCP data when publicly presenting any results or algorithms that benefitted from their use.
1. Papers, book chapters, books, posters, oral presentations, and all other printed and digital presentations of results derived from HCP data should contain the following wording in the acknowledgments section: "Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University."
2. Authors of publications or presentations using WU-Minn HCP data should cite relevant publications describing the methods used by the HCP to acquire and process the data. The specific publications that are appropriate to cite in any given study will depend on what HCP data were used and for what purposes. An annotated and appropriately up-to-date list of publications that may warrant consideration is available at http://www.humanconnectome.org/about/acknowledgehcp.html
3. The WU-Minn HCP Consortium as a whole should not be included as an author of publications or presentations if this authorship would be based solely on the use of WU-Minn HCP data.
6. Failure to abide by these guidelines will result in termination of my privileges to access WU-Minn HCP data.
Error
Something has gone wrong in the attempt to record your agreement to the Open Access data use terms. If you are using a ConnectomeDB account, we recommend following these steps:
- Log out of BALSA
- Log into your ConnectomeDB account
- Locate any HCP data set
- Click on the 'Data Use Terms Required' button
- Accept the terms
- Log back into BALSA
We apologize for any inconvenience.
Files
FULL TITLE:
Fiber Length Profiling: A Novel Approach to Structural Brain Organization
SPECIES:
Human
DESCRIPTION:
This scene provides the images and final data from the Bajada et al (2018) "Fiber Length Profiling: A Novel Approach to Structural Brain Organization".
For completeness, all images from the paper have been uploaded into BALSA scenes, however, only figures 2 and 4 can be manipulated and explored within wb_view.
All other images are stillframes and were generated in MATLAB (the .fig files can be found within a separate directory once downloaded).
To recreate the image scenes in wb_view, please select the CTL-76.scene file from within wb_view, then select the desired figure number.
To explore the average cortical tract length maps please select the CTL-76.spec file from within wb_view.
All other images can be explored and manipulated by opening the relevant MATLAB fig file from within MATLAB.
ABSTRACT:
There has been a recent increased interest in the structural connectivity of the cortex. However, an important feature of connectivity remains relatively unexplored; tract length. In this article, we develop an approach to characterize fiber length distributions across the human cerebral cortex. We used data from 76 participants of the Adult WU-Minn Human Connectome Project using probabilistic tractography. We found that connections of different lengths are not evenly distributed across the cortex. They form patterns where certain areas have a high density of fibers of a specific length while other areas have very low density. To assess the relevance of these new maps in relation to established characteristics, we compared them to structural indices such as cortical myelin content and cortical thickness. Additionally, we assessed their relation to resting state network organization. We noted that areas with very short fibers have relatively more myelin and lower cortical thickness while the pattern is inversed for longer fibers. Furthermore, the cortical fiber length distributions produce specific correlation patterns with functional resting state networks. Specifically, we find evidence that as resting state networks increase in complexity, their length profiles change. The functionally more complex networks correlate with maps of varying lengths while primary networks have more restricted correlations. We posit that these maps are a novel way of differentiating between ‘local modules’ that have restricted connections to ‘neighboring’ areas and ‘functional integrators’ that have more far reaching connectivity.
PUBLICATION:
NeuroImage
- DOI:
10.1016/j.neuroimage.2018.10.070
- Claude J Bajada
- Jan Schreiber
- Svenja Caspers
- University of Malta
- University of Düsseldorf
- Forschungszentrum Jülich