Scene: Vector field model density at white/grey-matter boundary
Data Use Terms
WU-Minn HCP Consortium Open Access Data Use Terms
1. I will not attempt to establish the identity of or attempt to contact any of the included human subjects.
2. I understand that under no circumstances will the code that would link these data to Protected Health Information be given to me, nor will any additional information about individual human subjects be released to me under these Open Access Data Use Terms.
3. I will comply with all relevant rules and regulations imposed by my institution. This may mean that I need my research to be approved or declared exempt by a committee that oversees research on human subjects, e.g. my IRB or Ethics Committee. The released HCP data are not considered de-identified, insofar as certain combinations of HCP Restricted Data (available through a separate process) might allow identification of individuals. Different committees operate under different national, state and local laws and may interpret regulations differently, so it is important to ask about this. If needed and upon request, the HCP will provide a certificate stating that you have accepted the HCP Open Access Data Use Terms.
4. I may redistribute original WU-Minn HCP Open Access data and any derived data as long as the data are redistributed under these same Data Use Terms.
5. I will acknowledge the use of WU-Minn HCP data and data derived from WU-Minn HCP data when publicly presenting any results or algorithms that benefitted from their use.
1. Papers, book chapters, books, posters, oral presentations, and all other printed and digital presentations of results derived from HCP data should contain the following wording in the acknowledgments section: "Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University."
2. Authors of publications or presentations using WU-Minn HCP data should cite relevant publications describing the methods used by the HCP to acquire and process the data. The specific publications that are appropriate to cite in any given study will depend on what HCP data were used and for what purposes. An annotated and appropriately up-to-date list of publications that may warrant consideration is available at http://www.humanconnectome.org/about/acknowledgehcp.html
3. The WU-Minn HCP Consortium as a whole should not be included as an author of publications or presentations if this authorship would be based solely on the use of WU-Minn HCP data.
6. Failure to abide by these guidelines will result in termination of my privileges to access WU-Minn HCP data.
Error
Something has gone wrong in the attempt to record your agreement to the Open Access data use terms. If you are using a ConnectomeDB account, we recommend following these steps:
- Log out of BALSA
- Log into your ConnectomeDB account
- Locate any HCP data set
- Click on the 'Data Use Terms Required' button
- Accept the terms
- Log back into BALSA
We apologize for any inconvenience.
Files
study:
Modelling white matter in gyral blades as a continuous vector field
SCENE FILE:
track_gyral_wm
SCENE:
Vector field model density at white/grey-matter boundary
DESCRIPTION:
Figure 7A
Density of the vector field evaluated at the white/grey matter boundary (lighter colours indicate higher density). This shows the density of streamlines crossing the white/grey-matter boundary normalised by the cortical volume associated with each vertex.
Changing the map can be used to plot one of:
- the total density of streamlines at the white-grey matter boundary (irrespective of whether they are crossing or not)
- the radiality of the streamlines (dot-product between the normalised vector field and the surface normal)
- the x, y, and z components of the vector field
Note that the density of the vector field crossing the cortical surface is equal to product of the radiality and the vector field density at the surface (i.e., if the vector field is parallel to the surface, no fibres will cross the surface irrespective of the field density).
TAGS:
Surface Mesh:32k fs LR, Species:Human, Connectivity:Tracer Injection