Study: Parcellating Cerebral Cortex
Data Use Terms
WU-Minn HCP Consortium Open Access Data Use Terms
1. I will not attempt to establish the identity of or attempt to contact any of the included human subjects.
2. I understand that under no circumstances will the code that would link these data to Protected Health Information be given to me, nor will any additional information about individual human subjects be released to me under these Open Access Data Use Terms.
3. I will comply with all relevant rules and regulations imposed by my institution. This may mean that I need my research to be approved or declared exempt by a committee that oversees research on human subjects, e.g. my IRB or Ethics Committee. The released HCP data are not considered de-identified, insofar as certain combinations of HCP Restricted Data (available through a separate process) might allow identification of individuals. Different committees operate under different national, state and local laws and may interpret regulations differently, so it is important to ask about this. If needed and upon request, the HCP will provide a certificate stating that you have accepted the HCP Open Access Data Use Terms.
4. I may redistribute original WU-Minn HCP Open Access data and any derived data as long as the data are redistributed under these same Data Use Terms.
5. I will acknowledge the use of WU-Minn HCP data and data derived from WU-Minn HCP data when publicly presenting any results or algorithms that benefitted from their use.
1. Papers, book chapters, books, posters, oral presentations, and all other printed and digital presentations of results derived from HCP data should contain the following wording in the acknowledgments section: "Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University."
2. Authors of publications or presentations using WU-Minn HCP data should cite relevant publications describing the methods used by the HCP to acquire and process the data. The specific publications that are appropriate to cite in any given study will depend on what HCP data were used and for what purposes. An annotated and appropriately up-to-date list of publications that may warrant consideration is available at http://www.humanconnectome.org/about/acknowledgehcp.html
3. The WU-Minn HCP Consortium as a whole should not be included as an author of publications or presentations if this authorship would be based solely on the use of WU-Minn HCP data.
6. Failure to abide by these guidelines will result in termination of my privileges to access WU-Minn HCP data.
Error
Something has gone wrong in the attempt to record your agreement to the Open Access data use terms. If you are using a ConnectomeDB account, we recommend following these steps:
- Log out of BALSA
- Log into your ConnectomeDB account
- Locate any HCP data set
- Click on the 'Data Use Terms Required' button
- Accept the terms
- Log back into BALSA
We apologize for any inconvenience.
Files
FULL TITLE:
Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Non-Invasive Map-making in Humans
SPECIES:
Human
ABSTRACT:
Cerebral cortex in mammals contains a mosaic of cortical areas that differ in function, architecture, connectivity, and/or topographic organization. A combination of local connectivity (within-area microcircuitry) and long-distance (between-area) connectivity enables each area to perform a unique set of computations. Some areas also have characteristic within-area mesoscale organization, reflecting specialized representations of distinct types of information. Cortical areas interact with one another to form functional networks that mediate behavior, and each area may be a part of multiple, partially overlapping networks. Given their importance to understanding brain organization, mapping cortical areas across species is a major objective of systems neuroscience and has been a century-long challenge. Here we review recent progress in multi-modal mapping of mouse and nonhuman primate cortex, mainly using invasive experimental methods. These studies also provide a neuroanatomical foundation for mapping human cerebral cortex using non-invasive neuroimaging, including a new map of human cortical areas that we generated using a semi-automated analysis of high quality multi-modal neuroimaging data. We contrast our semi-automated approach to human multi-modal cortical mapping with various extant fully automated human brain parcellations that are based on only a single imaging modality, and offer suggestions on how to best advance the non-invasive brain parcellation field. We discuss the limitations as well as strengths of current non-invasive methods of mapping brain function, architecture, connectivity, and topography and of current approaches to mapping the brain’s functional networks.
PUBLICATION:
Neuron
- David C Van Essen
- Matthew F Glasser
- Washington University in St. Louis